2 Characterization of inclusion neighbourhood 3 in terms of the essential graph q 4

نویسنده

  • Milan Studený
چکیده

10 The question of efficient characterization of inclusion neighbourhood is crucial in some 11 methods for learning (equivalence classes of) Bayesian networks. In this paper, neighbouring 12 equivalence classes of a given equivalence class of Bayesian networks are characterized effi13 ciently in terms of the respective essential graph. One can distinguish two kinds of inclusion 14 neighbours: upper and lower ones. This paper reveals the hidded internal structure of both 15 parts of the inclusion neighbourhood. 16 It is shown here that each inclusion neighbour is uniquely described by a pair ([a,b],C) 17 where [a,b] is an unordered pair of distinct nodes and C Nn{a,b} is a disjoint set of nodes 18 in the essential graph. Upper neighbours correspond to edges in the essential graph, while 19 lower neighbours correspond to pairs of nodes that are not edges in the essential graph. Given 20 a pair [a,b] of distinct nodes in the essential graph, the class of those sets C that ([a,b],C) 21 encodes an inclusion neighbour is characterized. The class has a special form; it is uniquely 22 determined by certain distinguished sets. These distinguished sets of the class can be read 23 directly from the essential graph. 24 2004 Published by Elsevier Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Inclusion Neighbourhood in Terms of the Essential Graph: Uper Neighbours

The topic of the contribution is to characterize the inclusion neighbourhood of a given equivalence class of Bayesian networks in terms of the respective essential graph in such a way that it can be used eeciently in a method of local search for maximization of a quality criterion. One can distinguish two kinds of inclusion neighbours: upper and lower ones. A previous paper 15] gave a character...

متن کامل

Characterization of inclusion neighbourhood in terms of the essential graph

The question of efficient characterization of inclusion neighbourhood is crucial in some methods for learning (equivalence classes of) Bayesian networks. In this paper, neighbouring equivalence classes of a given equivalence class of Bayesian networks are characterized efficiently in terms of the respective essential graph. One can distinguish two kinds of inclusion neighbours: upper and lower ...

متن کامل

Characterization of Inclusion Neighbourhood in Terms of the Essential Graph: Upper Neighbours ? 1 Motivation 1.1 Learning Bayesian Networks

The problem of eecient characterization of inclusion neighbourhood is crucial for some methods of learning (equivalence classes of) Bayesian networks. In this paper, neighbouring equivalence classes of a given equivalence class of Bayesian networks are characterized eeciently by means of the respective essential graph. The characterization reveals hidded internal structure of the inclusion neig...

متن کامل

The Neighbourhood Polynomial of some Nanostructures

The neighbourhood polynomial G , is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph. In other word $N(G,x)=sum_{Uin N(G)} x^{|U|}$, where N(G) is neighbourhood complex of a graph, whose vertices are the vertices of the graph and faces are subsets of vertices that have a common neighbour. In this paper we compute this polynomial for some na...

متن کامل

Characterization of projective special linear groups in dimension three by their orders and degree patterns

The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004